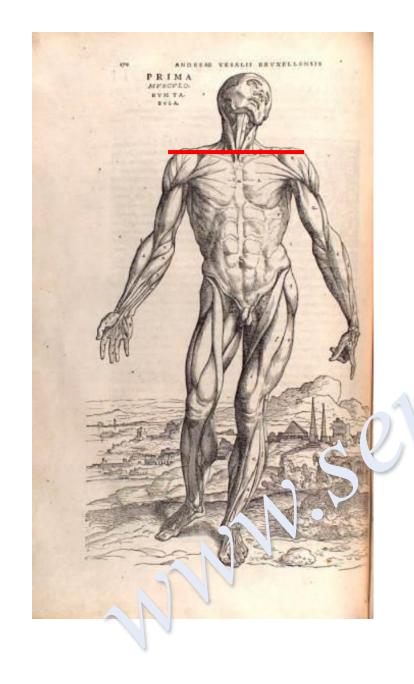


AOSpine Advances Symposium Spinal Deformity

December 03-04, 2010 Istanbul, Türkiye

Shoulder imbalance—risk factors, how to analyze, how to avoid


Dr. Alpaslan Şenköylü

Session: Adolescent idiopathic scoliosis

Consequences of Scoliosis

- Medical consequence
- Aesthetic consequence
 - Truncal shift
 - Waist-line assymetry
 - Rib hump
 - Shoulder imbalance

Vesalius (1514-1564)

What about the normal population?

Shoulders are not always level in the romal population ±10mm is cut-off

This imbalance does not itsed to an asymmetrical body perception

Akel I et al, Eur Spine J, 17:348-54, 2008

Shoulder Imbalance

Main reason is decompensation of proximal thoracic curve

Lenke Classification

Curve Type	Description	Characteristic Curve Patterns*			
		Proximal Thoracic	Main Thoracic	Thoracolumbai Lumba	Structural Region of Each Curve Type
1	Main thoracic	Nonstructural	Structural (major)	No stru tura	Main thoracic
2	Double thoracic	Structural	Structural (major)	Non, Yrı cıdral	Proximal thoracic, main thoracic
3	Double major	Nonstructural	Structural (major)	Structural	Main thoracic, thoracolumbar/lumbar
4	Triple major	Structural	Si us ural maji r†)	Structural (major†)	Proximal thoracic, main thoracic, thoraco lumbar/lumbar
5	Thoracolumbar/ lumbar	Nonstructural	onscructural	Structural (major)	Thoracolumbar/lumba
6	Thoracolumbar/ lumbar-main thoracic	Nonetruc aral	Structural	Structural (major)	Thoracolumbar/lumbar main thoracic

Lenke L et al, JBJS ,83A:1169-82

Is Lenke Criteria Valid for Defining Prox. Struc. Curve?

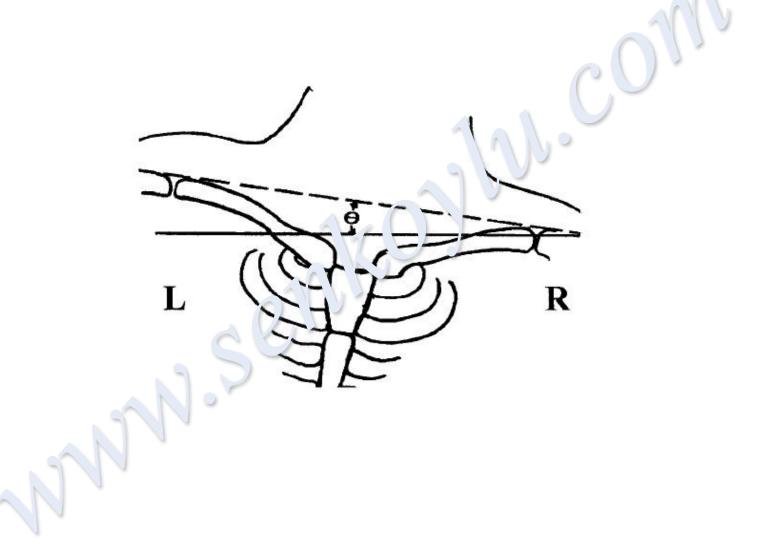
- n=37 with Lenke 1,3,5,6 (non structural prox. thoracic curves)
- Divided into two groups

Group1: Instrumentation including prox. tho acic curve

Group2: Instrumentation stops at T4 or 'ov 'el'

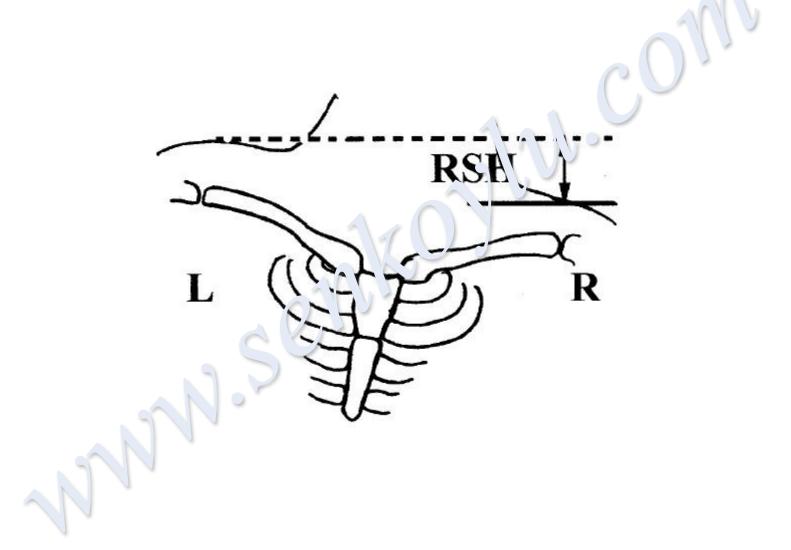
- Results: Isolated correction of the nain thoracic curve resulted in spontaneous correction of the norestructural PTC with rate of 41%
- Conclusion: Lenke struc anality criteria can effectively determine which proximal thoracic curves need fusion and which curves do not

Cil A et al, Spine, 30:2550-5, 2005


Postoperative Left Shoulder Elevation in Lenke Type-1

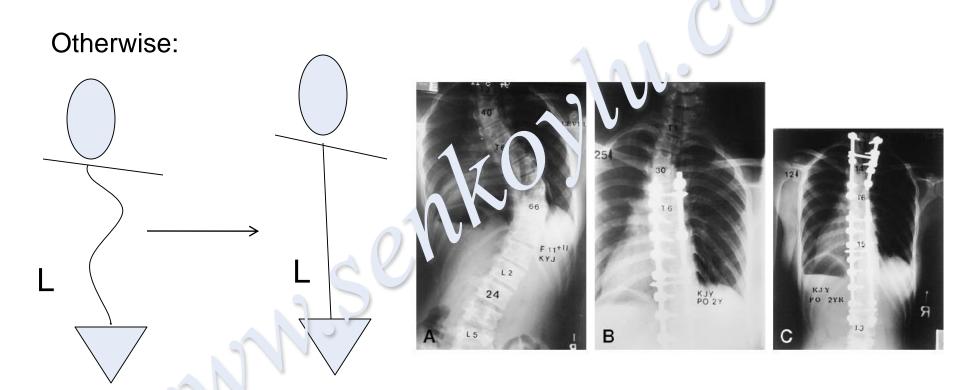
- <25 degrees is insufficient for the defining necessity of Prox Th.
 Curve fusion
- 39% rate of Lt shoulder elevation
- Risk factors:
 - Preop Lt shoulder elevation
 - PT Curve >25
 - Incomplete instrumentation of PT
 - Postop PT> 14
 - Correction of NIT>67%

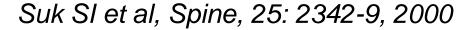
O'Brien M et al, SRS 43. Annual Meeting, Salt Lake City, 2008



Clavicle Angle

Shoulder Height


T1 Tilt



Lenke Type 1 and 3 curves (PTC is non-struc.)

Left shoulder level or elevated → Stop at T2

Lenke Type 1 and 3 curves (PTC is non-struc.)

Right shoulder elevated

Traction xray under general anesthesia

If the (-) T1 tilt improves and position of first riks are reversed

Extend fusion Lo. 2 T2

Disadvantage: 75% overestimating of Lt shoulder elevation causing unnecessary extension of fusion

Alanay A et al, Eurospine 2010, Vienna,

How to Determine the Upper Level of Instrumentation in Lenke Types 1 and 2 Adolescent Idiopathic Scoliosis

A Prospective Study of 132 Patients

Level of evidence-3

Brice Ilharreborde, MD, MS, Julien Even, MD, Yan Lefevre, MD, Franck Fitoussi, MD, Ana Presedo, MD, Philippe Souchet, MD, Georges-François Penneçot, MD, and Keyvan Mazda, MD

ι Γ is not necessary

Partial or total PT is necessary

PT is necessary

Conclusions

- Shoulders may not be level in the normal subjects
- Fuse all structural curves
 - Lenke 2
 - Lenke 4
- Lenke 1 and 3
 - If the Lt shoulder levei or el≥vated → Fuse the Prox. Th. curve
 - If the Rt shoulder ele ried → (consider T1 tilt)

Conclusion

- Risk factors of Lt shoulder elevation in Lenke 1
 - Preop Lt shoulder elevation
 - PT Curve >25
 - Incomplete instrumentation of PT
 - Postop PT> 14
 - Correction of MT>67%

Thank You

Alpaslan Sankoylu, MD
Associate Professor of Orthopaedics and Traumatology
Gazi University, Ankara-Turkiye
E-mail: senkoylu@gazi.edu.tr