

AOSpine Advances Symposium Spinal Deformity

December 03-04, 2010 Istanbul, Türkiye

Proper radiographic evaluation, parameters, clinical relevance and importance Dr. Alpaslan Şenköylü

Session: Sagittal Plane Deformities

THE NEW ENGLAND JOURNAL OF MEDICINE

IMAGES IN CLINICAL MEDICINE

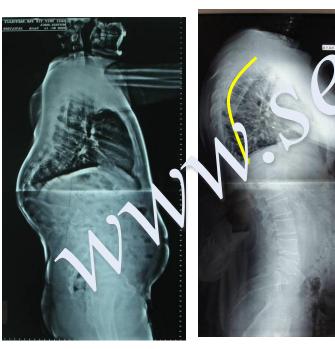
Severe Kyphosis

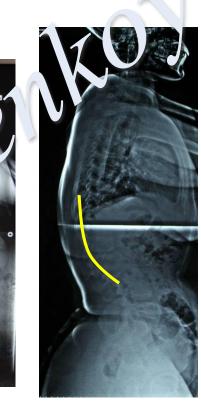
Boris Blechacz, M.D. Ognjen Gajre, M.D. Mayo Cl Nochest N. 1957 05

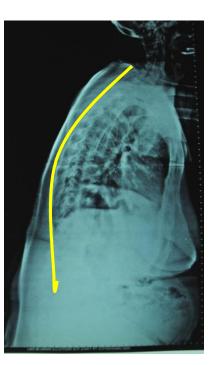
N BY IAR-OLD WOMAN WAS ADMITTED TO THE HOSPITAL WITH HYPERCAPNIC RESPIRATORY FAILURE. She had along history of oscoporosis. Eone densitomenty revealed a T score for the lambar spine of ~4.8. She vas taking abtherapeutic vitamin D and calcium supplements and had declined treatment with bisphosphonates. Over a period of 4 years, her T score declined farther, to ~5.0. A radiographic study showed multiple vertebral compression fractures that resulted in serious kyphosis. Progressive dysphagia secondary to thoracic deformity developed, resulting in a 26% weight loss over a period of 4 years. When she was admitted to the hospital, she reported weakness and shormess of breath. Multiple attempts at placement of a nasogastric tabe were unsuccessful because of marked esophageal kinking. Her respiratory status worsened, and she ultimately required fiberoptic instantion. Attempts to wean the patient from mechanical vendiation failed, and she ded 10 days after admission to the hospital. Severe kyphosis in the elderly often is due to osteoporotic vertebral fractures, which may lead to mechanical complications such as dysphagia, respiratory failure, and ultimately death. State as dysphagia, respiratory failure, and ultimately death. State as dysphagia, respiratory failure, and ultimately death.

629

IN EARLY MED 398(24 WWW-MEDMICHED JUNE 12 2008

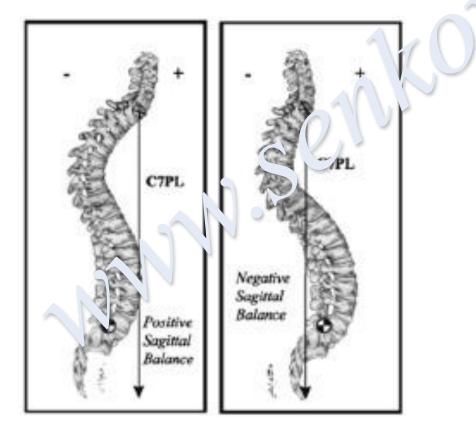

The New England Journal of Multicine Devenloaded from www.mejm.org on November 21, 2010. For personal use only. No other uses without permiteiton. Cosyright © 2028 Menaschasetts Metheol Society. All rights mereved.




Sagittal Plan Deformities

Exaggeration or deficiency of normal lordosis or kypt obis

- Congenital-developmental disorders
- Inflammatory disorders
- Degenerative disoders
- Post-traumatic disorders



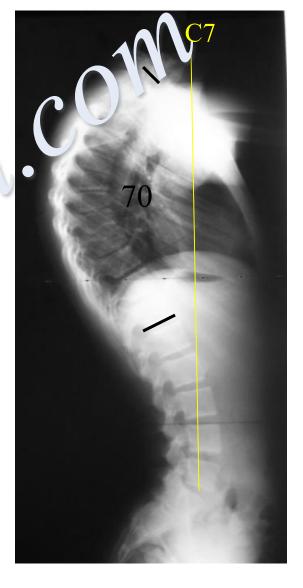
What is normal sagittal balance?

Definition of SRS:

SVA lies within $\pm 2 \text{ cm}$ of the sacral promontorium

Position of the patient

- Fists on clavicules position
 Faro FD et al, Spine, 29:2284-9, 2001
- Arms forward at 30-90 degrees and resting on a support
 Çil A st ai, Spine, 30: 93-100, 2004



EUROPE

Does normal balance mean normal alignment?

NO!

Measurement of curvature

Nomenclature

Scolosia= clear

Kyphosis= unclear

Which level is better?

T2-T12 , T3-12, T4-12, or

most tilted vertebrae

Which levels are maximally tilted?

n=121 normal subjects

- T2-12 → 49 %
- T2-L1 \rightarrow 13 %
- T2-T11 \rightarrow 10 %
- T1-12 \rightarrow 10 %
- T3-12 \rightarrow 7 %
- Others \rightarrow 11 %

Boseker EH et al, J Pediatr Orthop, 20:796-8, 2000

What is normal for Th Kyphosis?

SRS Guidelines \rightarrow 20-40 degress??

- T1-12 kyphosis → -55±10 (37-72)
 Çil A et al, Spinc, 30: 93-100, 2004
- T4-most tilted vertebra $Jis'a''y \rightarrow -37$ (7-63) Staynara P et al, Spine, 7: 335-42, 1982
- T5-12 kyphocis \rightarrow -64 ±10 (9-66)

Gelb DE et al, Spine, 20:1351-8, 1995

Intra and Interobserver Error of Measurement??

The mean intra-observer agreement interval for kyphosis angle measurement techniques range(from ± 7.1 to ± 9.3

The mean interobserver agreement interval for kyphosis angle ranged from ± 8.2 to ± 11.1

Alanay A. et al, Eur Spine J, 16:2126-32, 2007

T1 Sagittal Angle

The Spine Journal 10 (2010) 994-998

THE

JRI 'A'

Technical Report

The use of the T1 sagittal angle in predicting over ll sagittal balance of the spine

Patrick T. Knott, PhD, PA-C^{a,*}, Steven M. Mardjetko, MD^b, "ernand, Ter, hy, N")^c ^aCollege of Health Professions, Rosalind Franklin University, 3333 Green Bay R^{-/} North ¹ (a), II 60064, USA ^bIllinois Bone and Joint Institute, 9000 Waukegan Rd., Mortor G on U. 600, 7, USA ^cDepartment of Orthopaedic Surgery, University of Illinois Medical Center, 17, Wist 1, Vor St. Chicago, IL 60612, USA

Received 27 January 2010; revised 11 August 2014, ccep. 1 27 A wit 2010

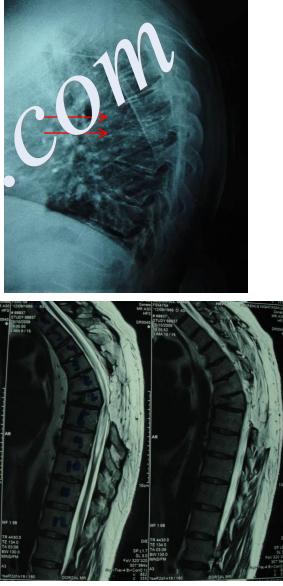
If the T1 tilt > 25° \rightarrow at least 10 cm of positive sagittal imbalance If the T1 tilt <13° \rightarrow negative sagittal balance Useful when long films cannot be obtained

Flexibility of the curve in sagittal plan

Very important for the surgical strategy

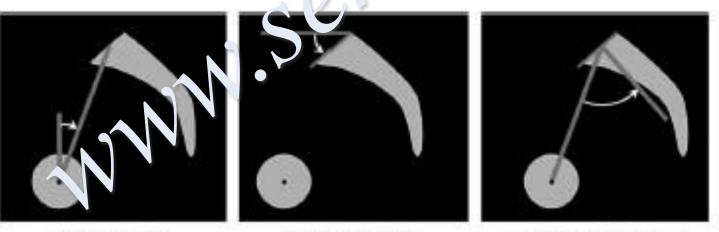
Necessity of release or us eutomy

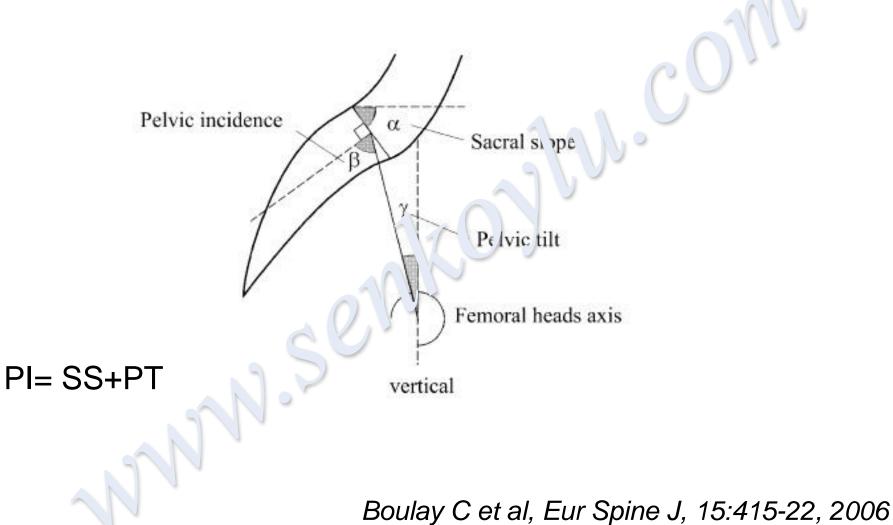
- Fulcrum extension
- Suspansion
- Traction under general anesthesia



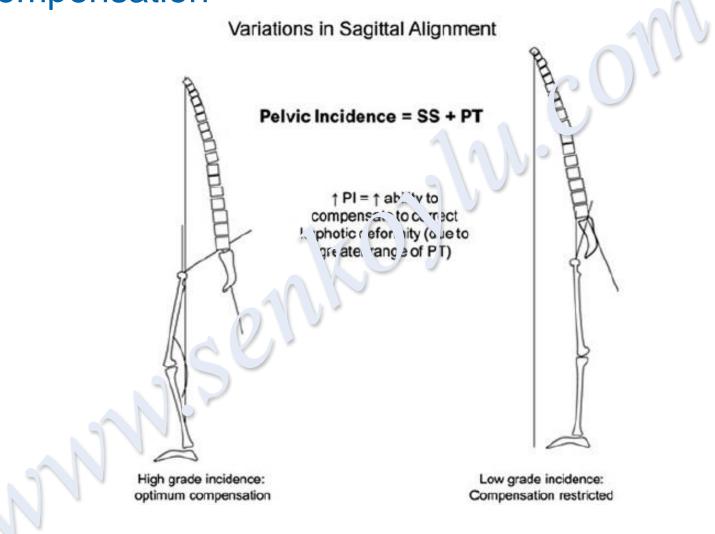
Other Imaging Modalities

- CT Scan
- MRI

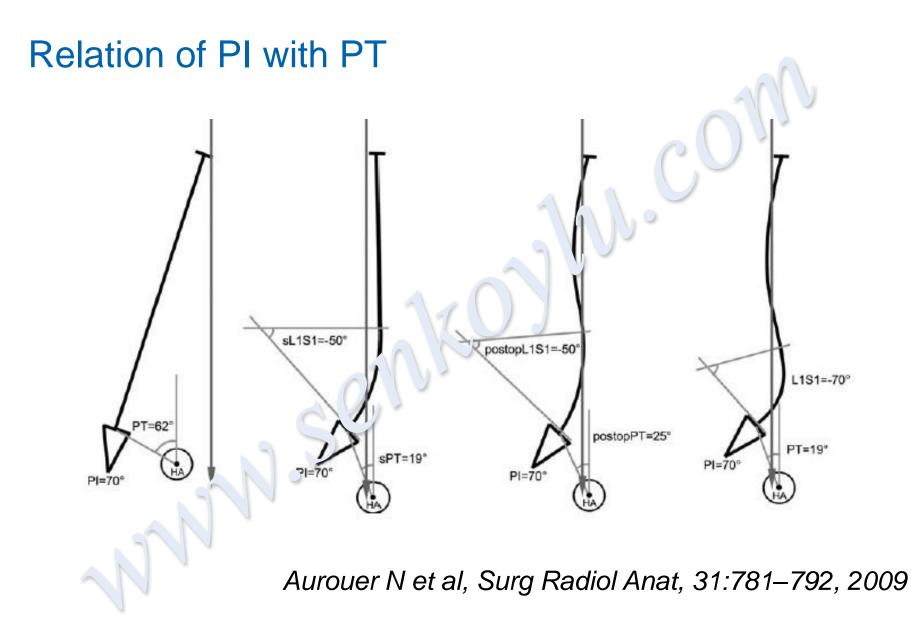



Pelvic Parameters

- Non Morphologic:
 - Sacral Slope
 - Pelvic Tilt
- Morphologic
 - Pelvic İncidence



Pelvic Incidence (PI)



PI-Compensation

Roussouly P and Nnadi C, Eur Spine J, 19:1824-36, 2010

Estimating of Lumbar Lordosis with PI

Direct correlation between pelvic position and HRQLA's

LL=PI +9 (±9)

Sch va.) F et al, Spine , 34: 1828-33, 2009

In PSO patients better SvA value obtained with

LL ≥ TK+PI - 45

Muiconrey DS et al, 42. SRS Annual Meeting, Edinburgh, p86, 2007

Sagittal Parameters Correlate with SRS Self-Image Scores in PSO

Associated factors		Total patients (n=102)	Better Si score(n=43)	P value
SVA	<5cm >5cm	56 43	3 121	0.003
C7 plumb to bicoxofem head	<0cm >0cm	67 35	34 9	0.015
T12 plumb	<-1c n -1cm	43 59	24 19	0.017
TK+LL+PI	<55 deg >55 deg	75 27	36 7	0.046

Bric vell K et al, 43.SRS Annual Meeting, 2008, Salt Lake City, 161-2

Clinical Relevance (Normal Sagittal Balance)

- Harmonious alignment of the trunk
- Allows to stand with spending the least amount of energy

Correlation of Radiographic Parameters and Clinical Symptoms in Adult Scoliosis Level of Evidence-3

Steven D. Glassman, MD,* Sigurd Berven, MD,† Keith Bridwell, MD,‡ William Horton, MD,§ and John R. Dimar, MD*

•Two cohorts:

A.No prior surgery n=172

B. Prior surgery n=126

•Evaluation criterias:

Radiographic measu emonts (coronal and sagittal) HRQLA's (ODI, SS-29,SF-12)

•Conclusion:

Positive sagittal balance means poor HRQLA in both groups Corchal imbalance >4 cm \rightarrow poor pain and function scores in group A

Ideal Ratio Between T-kyphosis L-lordosis

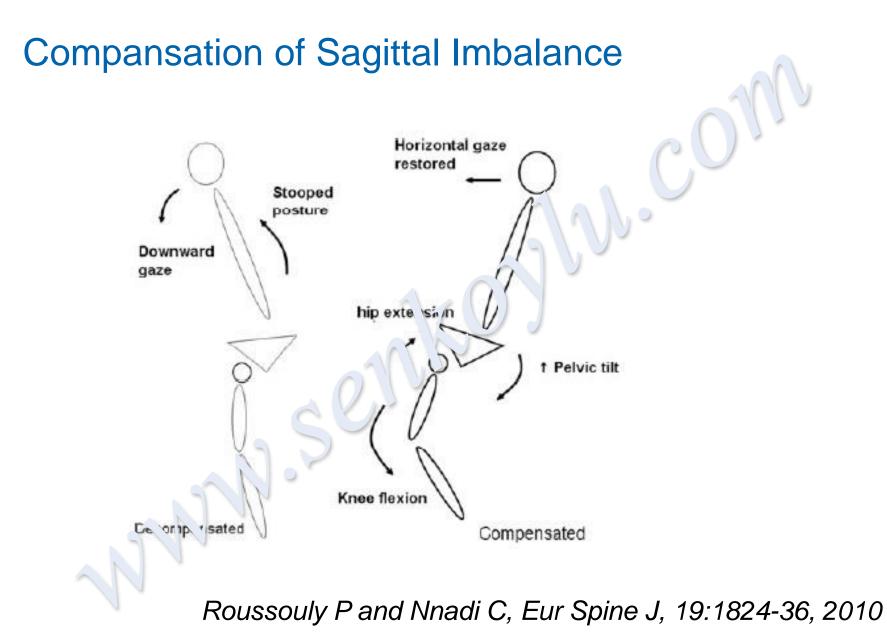
SPINF Volume 31, Number 20, pp 2343-2352 @2016, cipy new Williams & Wilkins, Inc.

An Analysis of Sagittal Spinal Alignmer t Following Long Adult Lumbar Instrumentation and Fusion to L5 or S1: Can We Predict Ideal Lumbar Profess?

Yongjung J. Kim, MD,* Keith H. Bridwell, MD,* avren 5. Lecke, MD,* Seungchul Rhim, MD,† and Gene Cheh, MD

Risk factors for the suboptimal sagittal balance:


- 1. Thoracic kyphusis+Lumbar lordosis+Pelvic incidence>45
- 2. Age >55 year
- 3. Postop 'umbar lordosis-thoracic kyphosis<20
- 4. Cagital imbalance > 5 cm
- 5. Be careful for the hyperlordosis


Clinical Presentation of Sagittal Problems

Tri-modal age distribution:

- 1. Teenagers: Scheuermann's kyphosis
- 2. 40-50 year age: Inflammatory disorders 'Anky losing spondylitis etc.)
- 3. Over 60's: Degenerative arthritis

Sagittal Alignment in Aging Spine

Glassman SD et al, Spine, 30:2024–9, 2005

Conclusions

- Normal sagittal balance does not mean num a silignment
- Measure the T kyphosis between the most filted vertebrae (T2-12)
- Normal T kyphosis is betweer 20-10 Jegrees??
- Evaluating the flexibility
- Different imaging studies
- Most important pelvic puremeter is Pelvic Incidence
- LL=PI+9 or LL>TK+P! 45
- Those with a large pelvic incidence are able to compensate sagittal imbalarge better
- Avoil' the positive sagittal balance

Thank You

Alpas lan Senkoylu, MD Associate Professor of Orthopaedics and Traumatology Gazi University, Ankara-Turkiye E-mail: senkoylu@gazi.edu.tr